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1. Periodic Indivisible Resource Allocation (PIRA)

* Asetof nAgentsA={A, A, ... A}

* A sent of mindivisible resources R ={r,, r,, ... r,,}

* An ordered set of atomic time units {t;, t,, ... t,}.

* H —the horizon (largest time unit considered).

* <A, r, t,> - The assignment of r;to A;at time t,.

* A complete assignment is a set of mH such triplets in which each
combination of r, and t, appears exactly once.

2. PIRA as an ADCOP

* Variables- represent room allocations.

* The number of variables an agent holds equals the maximal number
of rooms that can be allocated to the agent in the time interval.

* The utility derived by an agent from an allocation:

C = [(:1,'1. Tj1s fL.1>. <:1.,jq. l'jq. fkq). llic}

* The utility that A; derives from an allocation is the sum of utilities she

derives from all constraints she is involved in.
* The utility of an allocation (a solution) is the sum of personal utilities
of all agents.

3. Hospital Operating Room Scheduling
Represented as a PIRA
+ Agents represent wards.
* Variables represent room allocations.
* Values represent the room allocated to the ward at a
specific time.
* Unary constraints represent the benefit for the ward.

* Binary hard constraints prevent conflicts such as
assigning the same room to two departments on the
same day.

* Cardinal constraints represent whether the amount of
rooms allocated to a ward, addresses its needs.

5. Partially Cooperative PIRA Algorithm

Algorithm 4 SM_AGC_PIRA
input: baseLineAlloc;, baseLineCost;, A; and Q;
alloc < baseLineAlloc;;
pi < baseLineCost;;
localView « null;
send(alloc) to N (i);
while stop condition not met do
PHASE 1:
Collect all alloc messages and update localView
for each Aj € N(i) do
7i,j < preferences(Aj);
send(; ;) to Aj;
PHASE 2:
Collect all 7 messages;
i « mjen (i) Y preferences(Ai);
rig < sociallmprovingRequest (I1;, Q;);
send(reqig, socialGain;) to Ag;
PHASE 3:
Collect all (rj;, socialGain;) messages;
aj « agent in N (i) U A; with maximal socialGain s.t.
ci(localView after performing rj;) < p; - (1+4;);
send(Neg!) to N(i) \ aj;
PHASE 4:
Collect Neg! messages;
if did not receive Neg! from A, and from A; & can improve
then perform r;g;
else if did not receive Neg! from A;
then perform r;g;
send(alloc) to N(i);

* Includes 4 synchronous phases.
* Agents propose trades and request resources.

* Agents accept trades and/or requests, if the result does not cause an

unacceptable reduction of their utility or a breach of their bounds.

4. Example
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An example including:
* Three wards.
* Two Operating Rooms.

* For each ward the vectors specify the preferences over the
allocations of the rooms to it in every day of the week.

* The example also includes an upper and lower bound for
each ward representing the minimal number of allocations
the ward can accept and the maximal number of rooms it
can use in the time interval (e.g., a five working days week).

6. Experimental Evaluation
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Algorithm Versions:
* AGC - no preference sharing among agents.

* SM — Socially Motivated (includes preference sharing).
¢ Lim — Using bounds.

* ¢ — Complete cooperation.

¢ 0.1 /0.7 —values of partial cooperation parameter A.
The results indicate that:

* Socially motivated algorithms significantly out perform non
preference sharing versions.

* The versions that use bounds are the most successful.

10. Conclusions

* Realistic applications often require model and algorithm adjustments.

solve many realistic multi-agent optimization scenarios.

* There is a need to allow agents to balance between their own good
and the organization’s objectives.

* Socially Motivated Partial Cooperation successfully does so.

PIRA and the corresponding algorithms, can be used to represent and




