
RPPLNS: Pay-per-last-N-shares with a Randomised Twist
Philip Lazos1, Francisco J. Marmolejo-Cossío2, Xinyu Zhou3 and Jonathan Katz3

1Sapienza University of Rome 2University of Oxford, IOHK 3University of Maryland

RPPLNS: Pay-per-last-N-shares with a Randomised Twist
Philip Lazos1, Francisco J. Marmolejo-Cossío2, Xinyu Zhou3 and Jonathan Katz3

1Sapienza University of Rome 2University of Oxford, IOHK 3University of Maryland

Proof-of-Work Pool Mining

Pool Mining A salient feature of the Bitcoin protocol is that honest miners are paid
proportional to the computational resources they invest in mining. For smaller miners
however, finding a block can take an undesirable amount of time. For this reason, miners
often pool their resources together and split rewards in order to reduce payoff variance.
In practice, a pool operator sets a template block for pool miners, as well as a lower hash
target than that of the Bitcoin protocol. Mining a block with a hash value that is below
the pool difficulty threshold is called mining a share, and the threshold is called the share
difficulty. We parametrise share difficulty with D ≥ 0 which represents multiplicatively
how much lower the pool target is (equivalently, each share has a 1/D probability of being
a block). Miners attempt different nonce values within this template, and they report
shares, as well as fully valid blocks. Pool protocols must thus decide how to redistribute
rewards to pool miners as a function of the shares and blocks they report.

Pushing Share into Bag

9

32

1

Losing Random Bag Share

9

32

1

PPLNS/RPPLNS: In PPLNS a pool operator maintains an internal queue of length N
(where N is decided by the pool operator). When shares/blocks are found, they push the
oldest shares out of the queue. When a block is found, said N shares in the queue are paid
a proportional 1/N amount of the block reward as well. In RPPLNS the queue is replaced
with a bag, where a random share is kicked out rather than the oldest.

Desirable Properties: Ideally, participating in a pool should have (at least)
the following guarantees:
1. Fairness: miners earn the same block reward in expectation as mining alone.
2. Variance reduction: for any fixed amount of time, miners have lower variance in
block reward than when mining alone.

3. Robustness against pool hopping: at no point of time is there is a benefit in
leaving the pool for another one or leaving the pool to mine individually.

4. Incentive Compatibility: to maximize their reward, each participating miner
should always expend maximum effort and report shares/blocks immediately as
they are generated.

Our Contributions: Although PPLNS satisfies conditions 1-3 above, the in-
centive compatibility of honest pool mining has only been shown against specific
strategic deviations. With the small randomised twist that RPPLNS provides,
we show that it maintains properties 1-3, and demonstrate that honest mining is
robust to a larger class of strategic deviations than what is shown with PPLNS.

Properties of RPPLNS:
Suppose that m1 is honest with hash power α.
1. Fairness: their expected per-turn block reward is α

D in an RPPLNS mining pool.
2. Variance Reduction: the variance of their per-turn block reward is 1

D2(α− α2) + α
ND

3. Robustness to pool hopping: Over a finite time-horizon, the payoff m1 obtains is only a function of
the amount of time they dedicate to mining for the pool.

4. Incentive Compatibility: given the simple state space of RPPLNS, we provide a recursion which allows
us to empirically compute hash rates and bag distributions where honest mining dominates an arbitrary
strategic deviation

Incentive Compatibility: One advantage of RPPLNS over PPLNS is that the state from the perspetive
of the strategic miner is just a tuple (`, s, b), where ` is the number of published shares, s is the num-
ber of private shares and b the number of private blocks. In PPLNS, ` would have to be the whole queue.

We can recursively define the gain of a strategic miner after k steps as gk(`, s, b). This can be computed
using dynamic programming and compared against expected the honest mining reward. In the figures
to the right we show the optimal strategy for m1, given α, the hash power of the honest in-pool miners
and the fraction of shares controlled by m1.

Notice that as long as the fraction of shares controlled by m1 is not too far from his hash power, the
result is honest behaviour. For the case where his hash power is either too high or the fraction of shares
he controls too different, strategic behaviour (which also happens for PPLNS and can be explained
theoretically) does occur. These situations are unlikely to happen in practice.

Experiments

0.0 0.2 0.4 0.6 0.8 1.0
m1

0.0

0.2

0.4

0.6

0.8

1.0
m

2
Fraction of Shares Owned by m1 : 0.05

Honest Mining
Hoard Shares
Hoard Blocks

0.0 0.2 0.4 0.6 0.8 1.0
m1

0.0

0.2

0.4

0.6

0.8

1.0

m
2

Fraction of Shares Owned by m1 : 0.15

Honest Mining
Hoard Shares
Hoard Blocks

0.0 0.2 0.4 0.6 0.8 1.0
m1

0.0

0.2

0.4

0.6

0.8

1.0

m
2

Fraction of Shares Owned by m1 : 0.20

Honest Mining
Hoard Shares
Hoard Blocks

0.0 0.2 0.4 0.6 0.8 1.0
m1

0.0

0.2

0.4

0.6

0.8

1.0

m
2

Fraction of Shares Owned by m1 : 0.30

Honest Mining
Hoard Shares
Hoard Blocks

0.0 0.2 0.4 0.6 0.8 1.0
m1

0.0

0.2

0.4

0.6

0.8

1.0

m
2

Fraction of Shares Owned by m1 : 0.75

Honest Mining
Hoard Shares
Hoard Blocks

0.0 0.2 0.4 0.6 0.8 1.0
m1

0.0

0.2

0.4

0.6

0.8

1.0

m
2

Fraction of Shares Owned by m1 : 0.80

Honest Mining
Hoard Shares
Hoard Blocks

0.0 0.2 0.4 0.6 0.8 1.0
m1

0.0

0.2

0.4

0.6

0.8

1.0

m
2

Fraction of Shares Owned by m1 : 0.90

Honest Mining
Hoard Shares
Hoard Blocks

0.0 0.2 0.4 0.6 0.8 1.0
m1

0.0

0.2

0.4

0.6

0.8

1.0

m
2

Fraction of Shares Owned by m1 : 0.95

Honest Mining
Hoard Shares
Hoard Blocks


